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We have calculated converged energies and tunneling splittings of the intramolecular stretching fundamentals
and high-frequency, low-frequency combination levels of (HF)2 on three potential energy surfaces. The
resonance states are located against a broad background of continuum states by a moment-based stabilization
method. The mean unsigned deviation from experiment for six tunneling splittings on the recently proposed
S2 surface and on the BJKKL surface of Bunkeret al. are 28% and 24%, respectively, as compared to 41%
for the previously available results on the SQSBDE surface of Quack and Suhm. The results for the S2
surface are more accurate for excitation of the hydrogen-bond acceptor mode than for the hydrogen-bond
donor mode, whereas those for the BJKKL surface are more accurate for the latter than the former.

Introduction

The HF dimer is the simplest hydrogen-bonded system;
nevertheless, it exhibits a variety of quantum mechanical
phenomena that present extant challenges to theory. These
include the potential energy surface, the vibrational spectrum,
and the dynamics. A review covering work in all three areas
up to 1989 provides background,1 and more recent reviews of
selected aspects are also available.2-4

Early quantum mechanical calculations of the vibrational
spectrum were based on reduced-dimensionality models in
which some degrees of freedom were frozen. Recently it has
become possible to calculate the low-lying energy levels of this
four-body systems by complete quantal calculations including
all degrees of freedom, for the ground state,5-12 lowest excitation
of the out-of-plane torsion,5,6,8-12 and general excited states.5,9-12

(For some states, approximate full-dimensional quantum cal-

culations have also been carried out by making nonrigorous
assumptions about the nodal hypersurfaces of the wave functions
or by making quasiadiabatic assumptions.6-8) These low-lying
states involve excitations of the bends (ν3 and excitations of
even numbers of quanta inν5), the hydrogen-bond exchange
motion (excitations of odd numbers of quanta inν5), the van
der Waals stretch (ν4), and the torsion (ν6). It is also of interest
to consider high-lying predissociated states involving excitations
of the high-frequency modesν1 and ν2 corresponding to
excitation of monomer stretches; Wuet al.12 presented the first
converged calculations of vibrational excitations involving
monomer stretches. In these calculations, Wuet al. employed
the SQSBDE6 potential energy surface.
Several potential energy surfaces1,6,8,11,13,14have been pro-

posed for (HF)2, and in the present study we carried out
calculations for three of these surfaces that are presumed to be
among the most accurate:
BJKKL, an analytic fit13 to the ab initio coupled-pairX Abstract published inAdVance ACS Abstracts,March 1, 1997.
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functional electronic structure calculations of Kofraneket al.15

plus additional points;
SQSBDE, the semiempirically-adjusted (S) surface of Quack

and Suhm6 (QS) fitted to theab initio data of Kofraneket al.15

plus dispersion coefficients,16 and then adjusted to reproduce
the experimental rotational constants (B) and the dissociation
energy (De);
S2, a second semiempirically-adjusted (S2) surface,11 based

on the earlier SQSBDE surface, further adjusted to retain good
agreement with the equilibrium geometry of that surface and
the experimental dissociation energy and theoretical vibrational
frequencies and also to agree with the experimental ground-
state tunneling splitting17 due to hydrogen bond exchange.
Very recently Klopperet al. have developed a new surface

called S-2.9, which is the culmination8 of a line of work by
Quack, Suhm, and co-workers3,7,8,14in whichab initio calcula-
tions are adjusted to produce semiempirical surfaces that agree
well with several6,18-23 experimental spectroscopic observations.
The parameters of the S-2.9 surface are not yet available to us
so we could not calculate the predissociated states for this
surface.
We consider here both the stretching vibrationν1 correspond-

ing to the stretch of the base, HT F‚‚‚HF, and the stretching
vibrationν2 corresponding to the stretch of the acid, HF‚‚‚H T
F, and we report results for both fundamentals and combination
bands. Our results for the SQSBDE surface confirm the
accuracy of the calculations of Wuet al.,12 and our calculations
for the other surfaces allow us to see for the first time the effect
of variation of the potential energy surface on the results. The
results are particularly timely in that experimental observations
of combination bands involving monomer stretches are now
available.18,24 The monomer stretch fundamentals were ob-
served earlier.25

The tunneling splittings in (HF)2 have also been studied by
approximate reaction-path methods. The reader is referred to
previous publications for reaction-path models of the tunneling
process.26,27 The present communication is concerned entirely
with accurate quantal calculations.
The binding energy of the dimer isD0 ) 1062 cm-1,20

whereas the stretching fundamentals occur at∼3900 cm-1.19,21

Thus, all states involving vibrational quantum numbersV1 > 0
or V2 > 0 are predissociated28 states, also called decaying states,
metastable states, quasibound states, or resonances.29 In
particular, since the dissociation of these complexes involves
converting internal excitation energy of a subsystem into relative
translational energy along a subsystem separation coordinate,
the resonances are of a type called multichannel,30 target-
excited,31 or Feshbach32 resonances.

Computational Methods

The resonance energies are calculated by the stabilization
method,33 originally developed for electronic spectra, but also
well-known34-37 for Feshbach resonances in vibrational prob-
lems. In this method the Hamiltonian is diagonalized in a finite
basis, which leads to an artificial discretization of the continuum
above the dissociation energy. Most of the eigenvectors and
eigenvalues above the dissociation energy correspond to ap-
proximations to scattering states, i.e., to collisions of two HF
monomers. However, the resonances are also represented in
the numerical spectrum. In our version of the stabilization
method, the resonances are picked out of the dense background
of scattering states by examining moments. In previous
applications using moments, we considered moments (q2)
involving the hyperradiusq and searched for small valuesssince
the scattering states are delocalized and the resonance states

localized.36,37 In the present work we used a different strategy;
in particular we calculated moments〈(R1 - R1e)2〉 and 〈(R2 -
R2e)2〉 of the acid stretch coordinateR1 and the base stretch
coordinateR2, whereR1e andR2e denote classical equilibrium
values of these coordinates. Since the continuum corresponds
to V1 ) V2 ) 0 but the resonances haveV1 > 0 or V2 > 0, the
resonances are identified by having considerably larger values
of one or another of these moments than are found for the
scattering states.
If xi is a coordinate describing the motion in modei and the

corresponding potential inxi is harmonic, i.e., equals 0.5kixi
2,

whereki is the force constant, then the relationship between
the expectation value ofxi

2 in the eigenstate specified by
quantum numberVi and the energyEVi of mode i in that
eigenstate is easily obtained from the virial theorem, which
yields

where

and ωi is the spacing in wavenumbers between successive
energy levels in modei. An approximate quantum numberVi
is then obtained from the ratio of the expectation values in the
eigenstate specified byVi and the ground state

The potential surfaces described in this work are anharmonic,
and so we should not expect to get integers when we compute
the right-hand side of eq 5, but nevertheless we do see patterns
in the right-hand side of eq 5 that allow us to assign quantum
numbers to individual states. The relevant variable to consider
to locate theν2 fundamental isx2 ) R1 - R1e, whereR1 is the
bond length of the monomer that in the equilibrium geometry
corresponds to the hydrogen bond donor andR1e is the
equilibrium bond length of that monomer in the dimer on a
given potential energy surface. Similarlyx1 ) R2 - R2e, where
R2 is the bond length of the hydrogen bond acceptor.
The basis functions are taken to have the form of a

symmetrized product of a sum of harmonic oscillator functions
in the van der Waals stretch coordinater, monomer eigenfunc-
tions in the stretch coordinatesR1 andR2, and laboratory-frame38

rotational-orbital functions. Each monomer eigenfunction is a
linear combination ofmvib harmonic oscillator functions for the
monomer. Using symmetry considerations presented previ-
ously,11 we calculate the tunneling splittings as the difference
in energy of a state in the Ag representation of the symmetry
group (which contains states with even values ofV5) and the
corresponding state in the Bu representation of the symmetry
group (which contains states with odd values ofV5).
We use the basis set truncation scheme defined by the

inequalities

and

〈xi
2〉 ) 1

ki
EVi

(1)

EVi
) (Vi + 1/2)hcωi (2)

Vi )

〈xi
2〉Vi

〈xi
2〉0

- 1

2
(3)

jsum(n) e jsum,max (4)

mmax(n) ) min{mmax,max

INT[Q- QVVsum(n) - Qj jsum(n)]
(5)
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In these expressions,n denotes a particular basis function
(characterized by basis set parametersV1, V2, j1, j2, andm),
jsum,maxis the maximum allowed value of the quantum number
jsum, wherejsumis the sum of the individual monomer rotational
quantum numbersj1 and j2, Vsum is the sum of the individual
monomer vibrational quantum numbersV1 andV2, mmax,max is
the maximum allowed indexm (1, 2, ..., not 0, 1, ...) on the
harmonic oscillator basis functions in the translational coordi-
nate, andQV, Qj, andQ are parameters. The strategy we use is
to fix QV andQj and increasejsum,max, mmax,max, andQ until
convergence is attained. In previous papers10,11we used simple
estimates,QV ) 6.7 andQj ) 1. Although the results converge
asQ, jsum,max, andmmax,maxare increased forany fixed values
of QV andQj, they converge faster ifQV andQj are optimized.
Therefore, in this work, we performed a rough optimization of
QV andQj for the excitation of the acid-stretch fundamental for
two of the surfaces. In this optimization we took advantage of
the fact that although the calculated resonance energies do not
strictly satisfy a variational bound theorem, in practical experi-
ence they do get lower as one adds basis functions in the
monomer vibrational modes and/or the rotational-orbital modes
with a fixed basis in the van der Waals stretch mode. Using
this observation we obtain approximately optimized values of
QV ) 3.9 andQj ) 0.65 for the BJKKL potential andQV ) 2.4
andQj ) 0.8 for the SQSBDE surface. We used these values
for convergence tests, and we also usedQV ) 2.4 andQj ) 0.8
for the S2 surface, because it is similar to the SQSBDE surface.
The final run on the BJKKL surface usedQV ) 2.4 andQj )
0.65; excellent stability with respect toQV was exhibited. The
values of the other basis set convergence parameters for the
final calculations on each of the three surfaces are given in Table
1.

Results and Discussion

The supporting information shows that the fundamental
excitation energies are converged within 1 cm-1, and the ground-
state tunneling splittings are converged within about 0.02 cm-1

over a broad range of basis set parameters and sizes. The
fundamental excitation energies are lower than the isolated
monomer values (3961 cm),25 but except forν1, on the BJKKL
surface, which is very accurate, are higher than the experimental
values of 3931 and 3868 cm-1 for the dimerν1 andν2 modes,
with errors for these fundamental excitations of 9-39 cm-1.
However, our focus here is on the tunneling dynamics, not on
the shifts of the dimer with respect to the monomers. The
ground-state tunneling splitting of the S2 surface is in excellent
agreement with the experimental value17 of 0.66 cm-1. In fact,
one of the primary design goals11 of the S2 modification of the
SQSBDE surface had been to improve this agreement; the
SQSBDE surface has a ground-state tunneling splitting of9 0.44
cm-1.
As an example of the performance of the stabilization method,

consider the calculations on potential energy surface S2 with
parameter set PS5, which is a parameter set defined in Table
A-1 of the Supporting Information and used for calculations
reported in Table A-3 of the Supporting Information. For Ag

symmetry the ground state energy, 3017 cm-1, and two

fundamental resonance energies, 6914 and 6958 cm-1, are
eigenvalues 1, 1485, and 1512 in a matrix of order 9379. The
values of V2 calculated from eq 5 are 0, 1.11, and 0.30,
respectively, whereas the values ofV1 are 0, 0.08, and 0.89, so
the assignments as theV1V2 ) 00, 01, and 10 states are
reasonable. This is especially so when we consider that all
eigenvalues from 1486 to 1511 and from 1513 to 1556 haveV1
andV2 in the range 0.007-0.026. In contrast eigenvalue 1557
hasV1 ) 0.27, V2 ) 0.91; this eigenvalue corresponds to the
combination band withV1 ) 0 andV2 ) V4 ) 1. This eigenvalue
is followed by 10 more eigenvalues approximating the con-
tinuum with V1 and V2 in the range 0.008-0.022. Thus the
resonances are quite easy to identify. As one moves higher in
energy one sometimes finds an eigenvalue with greater mixing
of resonance and continuum or more mixing of acceptor and
donor character, but with a little care the method continues to
allow reasonable identification and assignment of resonances.
We further checked the assignments in some cases by examining
moments of〈R - Re)2〉, whereR is the intermolecular stretch
coordinate andRe is its equilibrium value; this moment is larger
whenV4 is excited.
Table 2 compares our results for five tunneling splittings to

the recent experimental results of Andersonet al.;18 these results
were not available at the time that the S2 surface was created.
Table 2 shows that the S2 surface provides considerable
improvement over the SQSBDE surface for the tunneling
splitting in both pure fundamental stretches and also in theν1-
ν4 combination band. However it does not improve agreement
with the experiment for theν1-ν5 andν2-ν5 combinations. We
note that theν4 motion is orthogonal to the tunneling path,
whereas theν5 motion is parallel to it. This may indicate that
the S2 surface is more accurate for the modes coupled to the
tunneling mode than for the barrier height or shape in the
tunneling mode itself. Barrier heights and shapes along
rearrangement coordinates are typically the hardest quantities
to converge in electronic structure calculations, so this situation
provides a considerable challenge to electronic structure meth-
odology to try to improve the surface by that means.
Agreement of the S2 results with experiment is much better

for tunneling splittings withV1 excited than for those withV2
excited. The coupling ofν2 to intermolecular coordinates is

TABLE 1: Basis Set Parameters

SQSBDE S2 BJKKL

Q 17.0 17.5 16.8
jsum,max 16 16 16
mmax,max 13 14 13
M (Ag) 9379 10958 13159
(Bu) 8786 10300 12428

TABLE 2: Excitation Energies and Tunneling Splittings
(cm-1) of Ground State and Predissociated Statesa

V1 V2 V4 V5 SQSBDEb SQSBDEc S2c BJKKLc experimentd

0 0 0 0 0.00 0.00 0.00 0.00 0.00
1 0.44 0.43 0.66 0.47 0.66
∆ 0.44 0.43 0.66 0.47 0.66

1 0 0 0 3940.64 3939.77 3940.37 3930.50 3930.90
1 3940.51 3939.64 3940.17 3930.35 3930.69
∆ -0.13 -0.13 -0.21 -0.15 -0.21

1 0 1 0 4064.87 4064.27 4060.62 4057.46 4058.47
1 4064.07 4063.55 4059.29 4056.52 4056.81
∆ -0.79 -0.72 -1.33 -0.94 -1.66

1 0 0 2 4101.30 4100.72 4081.06 4100.12 4097.42
3 4099.02 4098.47 4079.10 4097.25 4094.68
∆ -2.28 -2.25 -1.96 -2.87 -2.74

0 1 0 0 3896.39 3895.82 3896.49 3883.00 3868.08
1 3896.48 3895.91 3896.64 3883.16 3869.39
∆ 0.09 0.10 0.14 0.16 0.23

0 1 1 0 4034.87 4034.49 4026.28 4008.68 4000.69
1 4035.28 4034.98 4028.00 4008.96 -
∆ 0.41 0.49 1.72 0.28 -

0 1 0 2 4065.96 4065.56 4048.90 4055.05 4046.75
3 4067.99 4067.57 4049.60 4058.77 4050.34
∆ 2.03 2.01 0.70 3.72 3.59

aAll states in this table haveV3 ) V6 ) 0. bWu et al., ref 12.cPresent
calculations.dDyke et al. (ref 17) for ground state; Andersonet al.
(ref 18) for predissociated states.
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underestimated more by the SQSBDE and S2 surfaces than by
the BJKKL surface, and these features may indeed turn out to
be related.
The average unsigned percentage deviation from experiment

for the six tunneling splittings for which comparison is possible
is 28% for S2, while that for the SQSBDE surface is 41%. It is
encouraging that modifying the SQSBDE surface semiempiri-
cally for the ground-state tunneling splitting has also reduced
the average relative error in tunneling splittings of predissociated
states at much higher energies. Interestingly, the average
unsigned percentage deviation in the older,ab initio BJKKL
surface is only 24%, which is smaller than for either semiem-
pirical surface. The agreement for the BJKKL surface is
especially better than the semiempirical surfaces for states with
V2 ) 1.

Concluding Remarks

We have demonstrated good convergence of stabilization
calculations for the energies and tunneling splittings of predis-
sociated states of (HF)2 with a three-parameter basis set selection
scheme. We used this method to test the predictions of the
two semiempirical potential energy surfaces for which these
were previously unknown. Our calculations show that as
compared to the one previously available calculations, both
surfaces reduce the mean unsigned percentage deviation in six
available tunneling splittings, in one case from 41% to 28%
and in the other case to 24%. Very recently, more tunneling
splittings have been reported;39 continuing experimental and
theoretical activity on this problem in our and other
groups2,3,8,12,18,40may eventually lead to a quantitative under-
standing of this prototype hydrogen-bonded cluster.
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